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1. Model architectures and hyperparameters 

The final forward model architecture consists of three bidirectional long short-term 

memory (LSTM) layers followed by three fully connected layers before the final output. The input 

takes an Nx5 array, with N in the first dimension representing the number of structure layers, and 

the second dimension encoding the dummy variables for the four materials and the scaled 

thickness. The LSTM layers have 128 units each, and the fully connected layers start with 500 

neurons decreasing by 100 each layer until the final output dimension of 300.  

The inverse model uses a series of convolutional and pooling layers, fully connected layers, 

and a final MDN layer for prediction. There are five pairs of convolutional and max pooling layers. 

All convolutional and pooling layers have 32 filters. The convolutional layers start with a 

dimension of 300 at the input and shrink by a factor of two after each pooling layer, rounding up 

if needed, finally reaching a dimension of 32x19 before being flattened and connected to the fully 

connected layers. The kernel for the first three convolutional layers has a dimension of 1x5 and 

the subsequent two have a dimension of 1x3. The fully connected layers start with 1000 neurons 

then decrease by 100 for the next two layers. The final 800 neuron layer is connected to 11 outputs, 

10 of which have a dimension of four, representing the likelihood of a given layer being a certain 

material. The last output is the MDN layer, which uses 32 mixtures. These 32 mixtures are encoded 

by 672 neurons representing the mean and variance for each mixture for each of the 10 thickness 

variables, plus 32 mixture parameters. All models use the Adam optimizer with an initial learning 

rate of 0.01. A learning rate scheduler is used, which manually reduces the learning rate by 30% 

if the validation loss does not decrease for 7 consecutive epochs. The full architecture diagrams of 

both models are shown in Figure S1. 

 

2. Comparative studies  

One comparative study varied the number of weight layers in the network that were 

transferred between subsequent models. This transfer procedure used a step size of 2 between 

different structure layer numbers. For this, a dataset of 10,000 samples was generated for each 

model, split into 70% training and 30% validation, and the model is trained with the same 

hyperparameters as specified in the main text for 300 epochs. The loss results for the final 30-layer 

case are shown for each of the different weight transfer configurations in Figure S2. From this we 

found a general trend that transferring more weight layers in the network up to 4 layers reduced 



the RMSE, but further than this, the loss increased. This was tested under different conditions with 

material choices and wavelength ranges, as well as with deeper and shorter networks, and the 

consistent trend was that transferring up to the penultimate layer yielded the best results, but 

transferring all layers was not optimal.  

A second study compared the step-size in model complexity, how many more layers the 

thin film structure for the next model had compared to the previous one. Step-sizes of one through 

five were tested going from a starting structure of 6 layers all the way up to 30 layers. In the step-

size five case, since this didn’t divide evenly to each 30 layers, the final transfer was only by four 

layers. For this, four weight layers were transferred at each step, and the same 10,000 samples split 

into training and validation were used. The results at the 30-layer training are shown in Figure S3. 

The conclusion was that a step size of four offered the best results at higher layer numbers. The 

final forward model used in the main text uses 4-layer weight transfer with a step size of 4 between 

successive models. A 30-layer structure forward model was also trained with the same dataset size 

without the use of the nested transfer method. The model without transfer converged to a much 

higher error than the model using nested transfer (Fig. S4). A further comparison between the two 

models using other regression metrics is shown in Table S1. 

 A comparison between the model setup used in this work and those used in other works 

featuring transfer learning for thin film structures is shown in Table S2. Of note, while the number 

of data used here is higher, the difficulty of the modeling task is significantly greater. The number 

of layers increases by fivefold from the base case, with the complexity of modeling raising non-

linearly with the number of layers. The addition of free material choice at every layer and modeling 

both continuous and categorical variables in the same model is also a significant contributor to the 

higher data requirements. The higher complexity afforded with the greater number of layers and 

material choice allows the final model to be more flexible in modeling cases with real-world 

applicability.  

 

3. Post-processing method 

  For the post-processing procedure, first the MDN takes the desired optical spectrum, 

denoted as R, as input and generates N probability distributions at the output, each corresponding 

to one design variable. The initial guess of the design is obtained by assigning each variable the 

value at the most prominent peak of its respective distribution, without requiring complex 



sampling strategies. Next, the initial design suggestion is forwarded to the forward network to 

predict the optical response, denoted as RM, which represents the response of the active candidate 

design and is labeled as R0. The performance of this design is evaluated by comparing R0 with the 

ground truth optical spectrum R, using cosine similarity as a comparison metric. The optimization 

process commences, wherein one of the N variables of the active candidate design is randomly 

chosen and resampled a specified number of times, based on its probability distribution, to generate 

new guesses. The remaining N-1 variables are kept fixed during this resampling. Whenever the 

predicted response of a new guess Ri is closer to R than R0, that guess becomes the new active 

candidate design, and R0 is updated accordingly. The resampling and evaluation process repeats 

for all N variables in a random order, and this cycling through all variables can be repeated multiple 

times. If the forward model is accurate enough, the prediction of the design guesses' error relative 

to the ground truth will closely approximate the true error, leading to continuous improvement of 

the design over time. It is worth noting that throughout the design process, simulation is only 

employed once at the very end for verification, when the finalized design R' is simulated using an 

electromagnetic solver to compute its actual properties. Forward models were trained separately 

for both the standard dataset which included dielectrics and oxides on a glass substrate, and the 

thermal applications dataset, which included tungsten in the layer materials. These models were 

trained from scratch for 200 epochs with the larger datasets used for the inverse model. Since this 

is being used for a forward model, the target output data from the inverse model are used as the 

input, and vice versa. Both models converge to an RMSE below 0.02, allowing for near perfect 

reproduction of the target spectra. The training results for the forward models are shown in Figure 

S5.  

  

 



 
Figure S1: (a) Diagram of architecture used for the forward model. Three bidirectional LSTM 

layers are followed by three fully connected layers. The numbers in parentheses represent the 

number of units or neurons for each layer. (b) Diagram of architecture for the inverse model. 

Convolutional and pooling layers are followed by fully connected layers. The numbers on the 

bottom represent the dimension of the convolutional and pooling layers and the number of neurons 

in the fully connected layers. 

  

 



 
Figure S2: Training curve of the 30-layer over 300 epochs for different weight transfer 

configurations between subsequent models from an initial 6-layer model, using a step size of two 

between each model. 



 
Figure S3: Training curve of the 30-layer over 300 epochs for different step sizes between 

subsequent models from an initial 6-layer model.  

  



 
Figure S4: Training curve of two 30-layer forward models over 300 epochs, one using the nested 

transfer method, and one trained from scratch without transfer. 

  



  
Table S1: Comparison of 30-layer forward models using and without using nested transfer by 

different regression metrics. Mean squared error (MSE), Pearson correlation coefficient, and mean 

absolute error (MAE) were calculated from 5000 random samples from the test dataset. 

 

 

 

 
Table S2: Comparison of dataset and model parameters between this work and other works 

featuring transfer learning applied to thin film structures. Total training dataset size includes 

training data for base case and all unique transfer cases. * For Kaya and Hajimirza, transfer is 

conducted between models for different material combinations, but for any given model, the 

materials are fixed, as opposed to this work as well as Qiu et. al. 

 



 
 

Figure S5: Loss curves for the test datasets for the 10-layer forward models used for the post-

processing. The model used for the standard dataset (blue) converges to a lower value than the 

model for the thermal applications (orange). 

 
 


